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Multiparticle random walks on a deformable medium
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Multiparticle random walks on a deformable medium have been investigated+iri ) 2limensions. The
time evolution of the particle distribution is studied. The results show that the randomly distributed particles in
the beginning will be self-organized into a cluster pattern in the intermediate stage, and then return to the
random distribution pattern in the late stage. The dependence of the clustering degree on the stiffness parameter
of medium «, stability parameter of systenf3, and average particle densipy, is also investigated. There
exists an optimal clustering stabilitg,,, at which the system has the strongest clustering ability and corre-
sponds to a maximum clustering coefficid?ﬁ. The dependence of the optimal clustering coefficlépton
the stiffnessa and particle density, is obtained, and the landscape of the medium generated by particles is
also investigated.
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I. INTRODUCTION extended version of the self-attracting walk, and in this walk
the jumping probability is related to the number of times
Because of the interest in both physics and mathematicgisited a site is. The model also shows the similar crossover
communities, random walkdRW) and its applications have behavior[15]. Lam and co-worker have proposed the active
been extensively investigated in variety of fie[ds-7]. The  random walk modg16]. In that model, the walker moves in
behavior of a large class of natural and social systems i@ potential (landscape The potential is changed by the
science(physics, chemistry, ecology, and econgnepan be  walker according to the landscape function. Lam and co-
cast into the form of random walK4,2]. In previous years, worker proposed two types of landscape functions for use
based on purely random walkise., Brownian motiohvari-  [16]. The random walks with the memory enhancement and
ous models of random walks with memory or interactiondecay have also been studied in two dimensiphg. It
have been studied in order to account for distinct features cdhows that there exist two different classes of walks. The
physical, chemical, and biological systems, whose complexrandom walks with a nonzero decay exponent belong to the
ity goes beyond what can be obtained from the simple ransame class as purely random walks, while the random walks

dom walk pictureg[8—-16|. The self-avoiding walk is the first for the nondecaying case fall into the true self-attracting
RW model considering partially the influence of the environ-walk class.
ment. In this model, the walker is prohibited to visit the sites  In a very recent paper by our grodf8], a model of
visited before in order to account for the repulsion betweerrandom walks on a deformable medium has been proposed.
two molecules that are close together. The model has beebifferent from the simple interacting random walks such as
found useful for investigating polymers in dilute solutid@j. the self-avoiding walks, self-attracting walks, €i8,10—-13,
Considering the truly growing phenomena, Arattal. have  our model counts in the cumulative memory effects of the
introduced a model called true self-avoiding wal®$ Inthe  walk by deforming the medium at each stei8]. Although
model the walker jumps at each step to one of the neighbotthe generalized interacting random walk models also take
ing sites with a probability depending on the number ofinto account the memory effecf8,13—17, the introduction
times the new site has been visited in the past. The Dombef a memory parameter in these models is somewhat unnatu-
Joyce model is a model based on the weighting of turningal. In our model, the walker moves on a true medium and
points, whose behavior is related to that of an Ising spirthereby has a clear physical pictjfe]. The model presents
chain[10]. Stanleyet al. have proposed a model of interact- a useful method for investigating the random walks in the
ing random walks in which each new site visited has acase when interactions exist between the walker and its en-
weight factor[11]. The model displays some of the intrigu- vironment. Namely, considering the whole of environment as
ing features of diffusion on random fractals, and also de= field or potential, in the walk the walker changes the field
scribes polymer chains with either repulsion or attraction(potentia) of environment at the visited site and in turn the
The self-attracting walk is also investigated in which thevariation of the field(potentia) affects the motion of the
probability for a walker jumping to a given site is exp walker afterwards. This is a common phenomenon for many
(—nu) with u<0, wheren=1 for the sites visited by the complex systems in natural and social sciences, such as river
particle at least once and=0 for the others[12]. This  formation, food seeking of ants, movement of the heat-
model shows a critical crossover with the attractive paramseeking missile, and so ¢d6-22. The model exhibits rich
eter increasing13,14]. The “true” self-attracting walk is an  behaviors, including a “localization-delocalization” phase
transition as the stiffness and stability parameters are varied

[18].
* Author to whom correspondence should be addressed. Email ad- In the random walk models mentioned above, attention is
dress: xwzou@whu.edu.cn mostly focused on the characteristics associated with the
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wandering of a single walkd®]. In fact, almost all the sys- Il. MODEL AND METHOD
tems consist of many individuals or elements in nature or

society. However, the behaviors of a set of random Walker?)aper[lS]. To characterize the interactions between the par-
are much less known, notwithstanding their intef@8-29.  {jo5 and medium, the most important work is establishing
In a multiparticle system the random walkers present manyye expressions of the deformation of the medium made by
special phenomena because of the interactions between the, \walker in the medium. In the present work, the deforma-
walkers and environments as well as those between the walkpp of the medium is depicted by the Kelvin-Voigt model
ers. One of the most interesting characteristics is the colleg31]. The model can describe the deformation modes of
tive motion of particles, which may be related to the migra-many materials in nature under a load, such as soil, rubber,
tion of locusts, flocks of flying birds, animal grouping habit, and so on. According to the Kelvin-Voigt modg1], under
collective behavior of robots, and so on. Vicsekkal. have  a constant stress, the variation of the deformation of me-
introduced a simple model of self-propelled particles in orderdium ¢ with time t can be expressed by an exponential form
to investigate the emergence of self-ordered motion in sys-

tems of particles with biologically motivated interaction e()=e.(1-e ), @

[26], in which particles are driven with a constant absolutewhere‘S is the maximum deformation at the tirheso. and
velocity and at each time step assume the average directiocg is a Sarameter concerned with the properties o;‘ the me-
of motion of the particles in their neighborhood with some ium compressed. The parameteis named as the stiffness
random perturbation added. The model exhibits a type Ogarameter of the medium. The larger the parametes, the
kinetic phase transition from no transport to finite net trans{,5.qer the further deformation of the medium is.

port. Considering the physical properties of active elements | the walk, the retention period of the walker per visit is
with mutual interactions, Shimoyaned al. proposed a math- expressed byr. The force o, applied on the deformable
ematical model of collective motidi27]. The model exhibits  medium is the weigh6 of the walker. Without loss of gen-
several kinds of cluster motion seen in nature, including colerality, we takes.,, G, and 7 as the length, force, and time
lective rotation, chaos, and wandering. Bussemadteal.  units, respectively. Thus, the deformation magnitude at site
also presented a cellular automation model for random walk¢i j) after n visits can be described as

ers with biologically motivated interactions favoring local .

alignment[28]. The model leads to collective motion or en(i,j)=1—e D, 2
swarming behavior, and a dynamical phase transition exhib- . :
iting spontaneous breaking of rotational symmetry occurs a\cf)vfhtifzg(flc;:r)n;gll laweegﬁgr?]rietdsi?des ;)he_l_lﬁg:jeigfgetﬁ; B?;Ef‘t'al
a critical parameter value. Considering a finite-size flock,ability with which the walker m(;vés from sitéi 0 toa
Levine et al. presented a discrete model consisting of Self’nearest neighbori (,j’) depends on the differen(;e between
propelled interacting particles that obey simple rul2s]. he deformation at :sitei(j) and that at sitei(,j’). It can be
The self-organization in the model can lead to a localize o

flock of finite extent. These dynamical models can give pic- xpressed by
tures of the cooperative motion for multiparticle systems, but — pf(j j)|(i’,j")}ocexp{ — Blen(i,j) —en+1(i",i )1}
the interactions between particles are somewhat unnatural. (3)

In the above multiparticle models, the collective motion
results from the direct interaction between parti¢®s-29.  where=1/kgT, kg is the Boltzmann constant andis the
Very recently, the patterns of particle distribution were inves-‘temperature” of systems. Since the randomness of the walk
tigated in multiparticle systems by the random walks withreduces with the increase @ for convenience the param-
memory enhancement and ded®@]. Although there exists eterg is called as the stability of the system.
no direct interaction between particles, the model also exhib- The deformable medium is represented by using a two-
its a similar collective behavior. In this paper, we investigatedimensional(2D) square lattice of siz& XL with periodic
the multiparticle random walks on @+ 1)-dimensional de- boundary conditions. Monte Carl@gMC) simulations have
formable medium. In the model, the nondirect interactingbeen used to study the movementMfandom walkers on
particles move in a true potential. Of interest is that thethe deformable medium. Initially the surface of the medium
present model exhibits a cluster state for the particle distriis flat with the deformation magnitude being zero at each
bution. The time evolution of the particle distribution and its site, and the particles are randomly distributed in the lattice
dependence on the average particle density, stiffness of maith the average particle densify,=N/L2. At each MC
dium as well as the stability of systems are studied by extenstep, a particle is selected at random and makes an attempt to
sively numerical simulations and also a simple theoreticamove to a chosen nearest-neighbor site according to the
analysis. The present work will be helpful to understand theprobability of Eq.(3). If the chosen site has been occupied
motion behaviors of particles in complex multiparticle sys-by the other particle, the movement is not accepted; other-
tems with interactions between elements and their environwise, the movement is performed. Then, the visiting time
ment. These behaviors appear to be the specific property aft the site occupied by the attempted particle is enhanced by
the collective motion for multiparticle systems, which is dis- one and the walk comes into the next MC step. After each
tinct from the motion of a random walker interacting with MC step the “time” is increased by W, such that after 1
the environment. time step, on the average, all particles in the system have

The model used here is the same as that in the previous
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attempted to jump. It should be noted that the present “time”
is not the true time, and we call it as the “quasitime.” When
the present model is applied to the biological systems, the
present “time” may correspond to the true time. For the pure
physical systems, the present definition of time is not consis;
tent with that of the true time, because the jump probability
of the walker is different at different time steps, which results ) o )
in different jump time. In the pure physical systems, the defi- @ ® ‘ ©
nition of true time can be obtained by choosing one walker

and jump direction with a global normalized probability.  FIG. 1. The evolution of the particle distribution pattern for the
However, the definition of time is not much relevant in the multiparticle system with the parametess=0.005, 8=5.62, and
present model because we focus on the pattern evolution @=0.05; timet=20 (a), 1500(b), and 100 00C).

the particle distribution. Therefore, for simplicity, we use the
above definition of quasitime to save the computation timependent realizations.

It will be_ shovyn in the following section that there exists Figure 1 shows the pattern evolution of the particle distri-
only a slight difference between the results from these tWay,tion for the multiparticle system with the stiffness
types of definition of time. _ , =0.005, stability3=5.62, and particle density,=0.05. It
We regard a group of particles as a cluster in which thezan pe seen from Fig. 1 that with the passage of time going
particles adjoin one after another. The definition of a clustekhe pattern of the particle distribution varies. The distribution
is described as any two particles that are nearest neighbogxhibits a random dispersive pattern in the early stage, then
and belong to the same clus{@2]. To characterize quanti- appear clusters which disperse in the whole lattice in the
tatively the clustering phenomenon of the particle distribu-intermediate stage, and returns to the random dispersive pat-
tion in the multiparticle systems, we introduce the averageern in the late stage. To quantify the distribution of particles,
cluster sizeS(t) of the systems, which is the weight averagewe calculate the clustering coefficiehf(t) of the system.
of the number of particles per cluster and is expressed dsigure 2 shows the evolution of the clustering coefficient
[32,33 I'(t) with time t for several systems with the same param-
etersa=0.005 andpy=0.05 but differeniB values. It can be
seen from Fig. 2 that there exists a maximum vdldeat an

results are taken from the averaging over at least ten inde-

> sPng(t) intermediate time* for eachg, andI'* varies with3. For
S(t)= S , (4) comparison, Fig. 2 al_sq _shows some co_rresp(_)nding results
2 ¢ obtained from the definition of true time in which the par-
. sny(t) ticles jump with a global normalized probability. As we can

see from Fig. 2, the difference between the results from two
types of definitions of time is very small. This indicates that

v_vherens(t) is the numbe'r of clusters withparticles at the the simulation results are reasonable by using the present
time t. Thus, the clustering degree of systems can be de

. - . - definition of quasitime.
scribed by the size-independent clustering coefficient The behaviors in Figs. 1 and 2 can be explained as fol-

lows. In the initial stage of the walk, the deformation of

S(t)—-1 ©) medium is very small and the surface of the medium is al-
N—1"

T(t)=

whereN is the number of particles in the system. It can be
seen that the value @f changes from 0 to 1.0. The larger the
coefficientI” is, the higher the clustering degree of the sys-
tem is. Wherl"=0, the particles do not cluster and are sepa-
rated from each other; whehi=1.0, the system has the
maximum clustering degree and all particles in the system
are connected to one cluster.

Ill. RESULTS AND DISCUSSION

We have investigated the time evolution of the pattern of 10° 10° 10*
the particle distribution and its dependence on parameters !
B, andpq in 2D_ mUIt_'part'Cle systems. For comparison, the FIG. 2. The evolution of the clustering coefficieh(t) with
number of particles is chosen to be abdlit 1000 for dif-  ime t at parametersy=0.005 andp,=0.05 for the stability3
ferent systems. Namely, the lattice size is takenlas =316 (x), 3.55(+), 3.98 (A), 4.47 (V), 5.62 (0), 7.94 ),
=int[ (1000p) 2], Whe“_‘»‘ infx] denotes the largest inte_ger 10.0 (O). For comparison, we also plot some corresponding results
X such thatX<x. The stiffness parameter takes value in  from the definition of true timgsolid symbol$, in which the par-
the interval[ 0.001,0.1. To remove the fluctuation, all the ticles jump with a global normalized probability.
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most flat, so the particles move randomly in the lattice as 0.025F ' :
with initiation. Moreover, in this stage the drift distance of a .
particle does not attain the average distance between neigh- 0.020
boring particles, the particles have few chances to meet, and L
most of particles are separated from each other. Thus, the 0.015
distribution of particles remains the random dispersive pat- Ir* -
tern[see Fig. 1a)] and the clustering coefficieht has a very 0.010
small value[see the short-time end of Fig)].2After a long

time, each site in the lattice has been visited many times by 0.005
particles and the deformation at those sites has reached a

large value close to the maximum deformatjdag]. Namely, 0.000

the deformed medium can be considered as a smooth plane
in this stage. In this case, the particles make purely random
walks in the medlqm anq the dlstrlbu_tlon of particles also FIG. 3. The characteristic clustering coefficiéit as a function
shows.a random d'SperS'V‘? pattgrn W'th_ a small valu&' of of the stability 8 at the particle density,=0.05. From top to
[see Fig. 1c) and the long-time tails of Fig.]2 bottom, stiffnessy=0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1.
However, in the intermediate stage of the walk, the par-
ticles have performed walks with a certain number of step§j,ctyation of the system is very strong. The motions of par-
and the trajectories generated by neighboring particles oveficies are governed by the randomness of the system, and the
lap partly. The walking of particles_ deforms the medium. Theparticles perform approximately purely random walks ire-
deformed medium can be described by the complex landspective of the deformatiofil8]. In this case, the particles
scape with valleys and apexgi8]. In this situation, the par- - cannot join and are randomly distributed in the lattice. There-
ticles will tend to gather in the valleys and form groups. Thefoe the characteristic clustering coefficidtit takes a very
motions of the particles in the same group are influenced bymga)| value, which corresponds to that of randomly distrib-
sharing the deformation region generated mainly by the paryieq particlegsee Fig. 3 When the stabilitys is very large
ticles in this group. Because the particles prefer to walk to-(>ﬁ ), the randomness of the system is very weak and the
ward the sites with the larger deformation, the particles in the,otions of particles are determined by the deformation of the

same group concentrate gradually and form a cluster aftefeqium[18]. In this situation the trajectories of the particles
certain time steps. Therefore, the distribution of particles apz ¢ compact, surrounding their original sites. The particles

pears a clustering phenomenjwee Fig. 1b)] and there ex- 46 |ocalized in their compact trajectories and diffuse in
ists a maximum valu€™ of the clustering coefficientin each them. In this case, the medium at visited sites has almost
I'-t curve of the systentsee Fig. 2 For convenience, We gached the maximum deformation except the sites near the
call the maximum valud™* as the characteristic clustering boundary of trajectoriefL8]. Thus, one can expect the par-
coefficient, which characterizes the clustering degree of pakjcjes to move independently before their meeting. After that,
tlcle§ in a system. ) ) = all the visited sites, which have almost reached the maximum
Figure 2 also shows that increasing the stability parametegieformation, are connected together. The particles will make
B widens thel'-t curves. This mainly results from the fact yyrely random walks in the connected region with the maxi-
that the largeiB leads to a stronger localization of particles, mum deformation and have a very small probability of jump-
and thereby the diffusion of particles is slow@s]. ing into the unvisited sitef18]. Therefore, in this situation
From Fig. 2 we can also find that for a fixed stiffness  the clustering degree of particles is expected to be not high,
there exists an optimal clustering stabiligy, at which the  gnd the system also has a small valud '8f (see Fig. 3.
system has the strongest clustering ability. Ads less or In the intermediate range @, the effect of the deforma-
larger thanp,,, the characteristic clustering coefficieRit  tjon ¢ is comparable to that of the thermal fluctuatiog bh
reduces. At the optimal clustering stabili,~5.62, there  the motions of particle§18]. On the one hand, because of
exists an optimal clustering coefficiehf; ~0.0093(see the  the finite 8 value, the particles can easily move in the me-
curve symbolized by diamonds in Fig).2n Fig. 3 we plot  dium comparing with the case of largg and have many
the characteristic clustering coefficiehit as a function of chances to meet. On the other hand, the generated deforma-
the stability 8 at the particle density,=0.05 for several tion may somewhat localize the motions of particles because
different @ values. It can be seen from Fig. 3 that as thethe value of8 is not very smal[18]. In this case, once two
stability 8 increases, the characteristic clustering coefficienparticles meet they will share the deformation generated by
I'* first increases to a maximum valdg , and then re- each other and tend to group and form a cluster. The more
duces. From Fig. 3 we can also see that the optimal clustethe number of particles in a cluster is, the more advantageous
ing stability 8, is almost independent of the stiffnegs but  the share of deformation is, and the more stable this cluster
the optimal clustering coefficien‘t“; increases drastically is. Correspondingly, one can expect that there exists an op-
with the reduction ofa. timal clustering stability3, at which the system is most
The dependence of the characteristic clustering coefficierfavorable for the clustering of particles, and the characteristic
I'* on the stability3 in Fig. 3 can be explained as follows. clustering coefficienf'* has a maximum valuE? (see Fig.
When the stability paramete8 is very small <3,), the  3). In the following, we will discuss the dependence of the
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optimal clustering coefficierT; on the stiffness.

First we investigate the clustering tinie of the system as
a function of the stiffness for fixed stability 8 and density 0.01]
po- According to Eq.(1), the smaller the stiffnesa is, the E
longer the needed time for the medium reaching the maxi-
mum deformation is, and the longer the clustering time of the
system is. From the discussion above, one can know that the @)
optimal clustering behavior of the system occurs in the case
where the thermal fluctuation approximately balances the ef- 0.001 ¢
fect of the deformation on the motions of particles. There- E
fore, in the case of optimal clustering one can estimate the
optimal clustering stabilitys, by the following expression
[18]:

Boe ~A, (68

Wheresg is the effective deformation shared by the clustered
particles andA is a constant of orde®(1). From Fig. 3 we
know that the optimal clustering stabilitg, is approxi-
mately independent of the stiffneas According to Eq(6a),

the effective deformatiors; is approximately a constant.

Employing the relatiom;§=1—e*“‘;, we can obtain that
aty =const. Thus, we have

tz ca L. (6b)
In Fig. 4(a) we plot the clustering coefficiedt(t) as a func-
tion of timet for several differente values at parameters
Bp=5.62 andp,=0.05. It can be seen from Fig(a} that the o S o
smaller the stiffness is, the larger the clustering tinté is, 10 10 10
and the higher the clustering degree of systems is. These o
behaviors are consistent with the discussions above. From FiG. 4. (a) The evolution of the clustering coefficieR(t) with
Fig. 4(a), we can estimate the characteristic timgecorre- timet at the parameter8=5.62(= B,) andp,=0.05; from right to
sponding to the characteristic clustering coefficiEfit Fig-  left, stiffnessa=0.001, 0.002, 0.005, 0.01, 0.02, 0.05, Q). The
ure 4b) shows the optimal clustering timg as a function of ~ optimal clustering timet; as a function of the stiffnesg; the
the stiffnessx in log-log scale. It can be seen from Figbt ~ symbols are the simulation results and the line is the fitting plot of
that the simulation results are in good agreement with EgEQ: (6D).
(6b).

Going a step further, we investigate the surface morphoiW(t) is zero. After some time, the motions of partiCleS will
ogy of the deformable medium generated by particles. In théleform the medium and the interface becomes rougher and
walk, because the motions of particles deform the mediumfougher, which leads to an increase in the surface width
the surface of the medium becomes rougher and roughé&¥(t). When some sites in the lattice reach the maximum
with the passage of time. In the simulations, the roughness (ﬁeformation, these sites will no Ionger contribute to the in-
the surface is characterized by the surface wid(t), which ~ crease ofw(t) and the surface widtiv(t) reaches a maxi-

is defined by the rms fluctuation in the deformation, mum. After that the number of sites with a maximum defor-
mation becomes more and more, and the surface width
1 L L _ 12 gradually reduces until the limit value of 0.0 at which all
w(L,t)= F 21 21 [e(i,j,t)—e()]?] (7) sites in the surface have reached the maximum deformation.
i=1j=

To further understand the roughening process, in Rig). 5

_ we also plot the surface width(t) as a function of time in
wheree(t) is the average deformation per site at the time  |og-|og scale. As one can see, there exists a crossovetfime
To monitor the roughening process quantitatively we meaguring the time evolution of the surface width. Initially the
sure the width of the surface as a function of time. Figuregyrface widthw(t) increases as a power of time,
5(a) shows the time evolution of the surface widifit) for
several 8 values at the stiffnesa=0.001 and density, w(t)=wgt?, t<t,, (8)
=0.05. It can be seen from Fig(& that the surface width
w(t) first increases until a maximum, and then decreasewherewy is the surface width of the medium at the initial
The behavior in Fig. &) is easy to understand. Initially each time. The exponens, which is called as the growth expo-
site in the medium does not deform and the surface widtment, characterizes the time-dependent dynamics of the
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FIG. 6. The optimal clustering coefficielm;f as a function of
the stiffnessa at densitypy=0.05. The symbols are the simulation
results and the line is the fitting plot of EQL1).

and apexes. The higher the clustering degree of particles is,
the rougher the surface of the medium is. Therefore, one can
expect that there exists a certain relationship between the
clustering degree and the roughness of the surface. To find
this relation, for simplicity we assume that the optimal clus-
tering coefficient is directly proportional to the reduced sur-
face width of the medium. Thus, we have

10 10" 10®  10®  10*  10° .~
t I'5oewp . 9

FIG. 5. (a) The evolution of the surface width(t) of medium
with time t at the parameterg=0.001 andp,=0.05; from bottom
to top, stabilityB=1.12, 1.41, 1.77, 2.0, 2.24, 2.51, 2.82, 3.(8.
The log-log plot of the surface width(t) with the same conditions
as (a); from bottom to topB=0.1, 1.41, 1.77, 2.51, 3.16; the line -
has a slope of 0.585. Wy oca ™. (10)

The reduced surface widihi(t) =w(t)/w, is independent of
the stiffnessa for short times. Combining Eq$6b) and (8)
we obtain

roughening process. From Fig(k§, we obtain the growth Comparing Eq(9) with Eqg. (10) and substituting the value

exponents=0.585. It can also be seen from Figbbthat of &, we get

there exists a critical roughening stabili¢~1.77 at which

the surface widthw(t) shows the best power-law relation % ocq™ 098 (12)

and the crossover timg, has the maximum value. A8

<., the curves of the surface width(t) bend downward, Figure 6 plots the optimal clustering coefficiehf; as a

and asB> B, the curves bend upward. The existence of thefunction of the stiffnessy in log-log scale. It can be seen

critical stability 8. also results from the competition between from Fig. 6 that the simulation results are in good agreement

the effect of the thermal fluctuation and that of the randomwith Eq. (11). The excellent data consistence supports the

ness on the motions of particl¢48]. The present critical proportional assumption in Eq9).

stability 8. corresponds to the case where the particles begin We also investigate the dependence of the particle distri-

to cluster, and the optimal stabili{, corresponds the case bution on the average particle densjty. In the investiga-

where the system is the most favorable for the clustering ofions, the stiffness of medium is fixed at=0.01, and the

particles. Therefore, the value g is less than that oB,,, particle densityp, takes value ranging from 0.001 to 0.1.

as expected. In addition, we also investigate the cases for thEhe results have shown that the systems have the similar

stiffnessa=0.005, 0.01, and 0.1, respectively. The surfaceclustering behaviors for different particle densities. Figure 7

width w(t) shows the similar behavior except the differenceplots the characteristic clustering coefficiétit as a function

of wy, and the same growth exponef#=0.585 is obtained of the stability 8 for severalp, values at the stiffnessa

as the case ofr=0.001. =0.01. It can be seen from Fig. 7 that the optimal clustering
From the discussions above, we can know that accompastability 5, is independent of the particle densjiy. How-

nying the clustering of particles, the surface of medium be-ever, with the particle density, rising, the clustering degree

comes rough and forms a complex landscape with valleysf particles increases drastically.
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FIG. 7. The characteristic clustering coefficiéiit as a function
of the stability 3 at stiffnessae=0.01; from bottom to top, density FIG. 8. The optimal clustering coefficiedit; as a function of
po=0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1. the particle density, at stiffnessa=0.01. The symbols are the
simulation results and the line is the fitting plot of Ed2b).
Figure 7 can be understood as follows. When the particle
densityp, of systems is larger, the average distance between IV. CONCLUSIONS
particles is smaller and the particles have more chances to
meet and cluster. Therefore, the clustering degree of particles

increases distinctly with the particle density rise. How- (2+1)-dimensional deformable medium. The evolution of

ever, the optimal clustering stabilitg, is determined by the particle distribution with time is studied. The results

striking a balance between the thermal fluctuation and defor- : o . .
. : . show that for the particle distribution there exists a clustering
mation of the medium, s@, is not related tgp,. As men-

. ) ) — phenomenon in the intermediate time of the evolution. The
tioned above, the average particle distance of the system ye,0nqence of the particle distribution on the stiffness of

affectithe clustering degree of particles. As the average di?ﬁediuma, stability of systemsg, and average particle den-
tanged decreases, more particl_e_s share the same deformati%rny po is also investigated. It shows that at an optimal clus-
region, and the clustering ability of the system enhancesering stability 3, , the system has the highest clustering ex-
Since the optimal clustering coefficieﬁg characterizes the (gnt corresponding to a maximum clustering coefficiEgt
clustering degree and clustering ability for the system with &4, the fixed stiffnessr and particle density,. The optimal
certaina, one can expect thaty is inversely proportional to  ¢jystering stabilityB, is almost independent of the stiffness

We have investigated the multiparticle random walks on a

the average distanak between particles as a and densityp,y. With the increase of the stiffness, the
—— optimal clustering coefficierﬁ; decreases following the re-
I'p o< 1/d. (128 |ation of I'* x %58 The relationship betweeR* and p,
P * 1/2 P
i L — 2 ) can be expressed by «pg“. The surface morphology of
Employing the relatiord=(1/po) ™, we obtain the medium is also investigated. It shows that initially the

surface widthw(t) increases as a power of time with the

* 1/2
Topo” (120 growth exponent of about 0.585.

Figure 8 shows the optimal clustering coefficid'r‘ﬁ as a

function of the average particle density in log-log scale. It

can be seen from Fig. 8 that the simulation results are in ACKNOWLEDGMENT

agreement with Eq12b). The slight difference between the
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