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Multiparticle random walks on a deformable medium

Sheng-You Huang, Xian-Wu Zou,* and Zhun-Zhi Jin
Department of Physics, Wuhan University, Wuhan 430072, People’s Republic of China

~Received 13 May 2002; published 24 October 2002!

Multiparticle random walks on a deformable medium have been investigated in (211) dimensions. The
time evolution of the particle distribution is studied. The results show that the randomly distributed particles in
the beginning will be self-organized into a cluster pattern in the intermediate stage, and then return to the
random distribution pattern in the late stage. The dependence of the clustering degree on the stiffness parameter
of mediuma, stability parameter of systemsb, and average particle densityr0 is also investigated. There
exists an optimal clustering stabilitybp , at which the system has the strongest clustering ability and corre-
sponds to a maximum clustering coefficientGp* . The dependence of the optimal clustering coefficientGp* on
the stiffnessa and particle densityr0 is obtained, and the landscape of the medium generated by particles is
also investigated.
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I. INTRODUCTION

Because of the interest in both physics and mathema
communities, random walks~RW! and its applications have
been extensively investigated in variety of fields@1–7#. The
behavior of a large class of natural and social system
science~physics, chemistry, ecology, and economy! can be
cast into the form of random walks@1,2#. In previous years,
based on purely random walks~i.e., Brownian motion! vari-
ous models of random walks with memory or interacti
have been studied in order to account for distinct feature
physical, chemical, and biological systems, whose comp
ity goes beyond what can be obtained from the simple r
dom walk picture@8–16#. The self-avoiding walk is the firs
RW model considering partially the influence of the enviro
ment. In this model, the walker is prohibited to visit the sit
visited before in order to account for the repulsion betwe
two molecules that are close together. The model has b
found useful for investigating polymers in dilute solution@8#.
Considering the truly growing phenomena, Amitet al. have
introduced a model called true self-avoiding walks@9#. In the
model the walker jumps at each step to one of the neigh
ing sites with a probability depending on the number
times the new site has been visited in the past. The Do
Joyce model is a model based on the weighting of turn
points, whose behavior is related to that of an Ising s
chain@10#. Stanleyet al. have proposed a model of interac
ing random walks in which each new site visited has
weight factor@11#. The model displays some of the intrigu
ing features of diffusion on random fractals, and also
scribes polymer chains with either repulsion or attracti
The self-attracting walk is also investigated in which t
probability for a walker jumping to a given site is ex
(2nu) with u,0, wheren51 for the sites visited by the
particle at least once andn50 for the others@12#. This
model shows a critical crossover with the attractive para
eter increasing@13,14#. The ‘‘true’’ self-attracting walk is an
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extended version of the self-attracting walk, and in this w
the jumping probability is related to the number of tim
visited a site is. The model also shows the similar crosso
behavior@15#. Lam and co-worker have proposed the acti
random walk model@16#. In that model, the walker moves i
a potential ~landscape!. The potential is changed by th
walker according to the landscape function. Lam and
worker proposed two types of landscape functions for
@16#. The random walks with the memory enhancement a
decay have also been studied in two dimensions@17#. It
shows that there exist two different classes of walks. T
random walks with a nonzero decay exponent belong to
same class as purely random walks, while the random w
for the nondecaying case fall into the true self-attract
walk class.

In a very recent paper by our group@18#, a model of
random walks on a deformable medium has been propo
Different from the simple interacting random walks such
the self-avoiding walks, self-attracting walks, etc.@8,10–12#,
our model counts in the cumulative memory effects of t
walk by deforming the medium at each step@18#. Although
the generalized interacting random walk models also t
into account the memory effects@9,13–17#, the introduction
of a memory parameter in these models is somewhat unn
ral. In our model, the walker moves on a true medium a
thereby has a clear physical picture@18#. The model presents
a useful method for investigating the random walks in t
case when interactions exist between the walker and its
vironment. Namely, considering the whole of environment
a field or potential, in the walk the walker changes the fie
~potential! of environment at the visited site and in turn th
variation of the field~potential! affects the motion of the
walker afterwards. This is a common phenomenon for ma
complex systems in natural and social sciences, such as
formation, food seeking of ants, movement of the he
seeking missile, and so on@16–22#. The model exhibits rich
behaviors, including a ‘‘localization-delocalization’’ phas
transition as the stiffness and stability parameters are va
@18#.

In the random walk models mentioned above, attention
mostly focused on the characteristics associated with
d-
©2002 The American Physical Society12-1
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wandering of a single walker@2#. In fact, almost all the sys
tems consist of many individuals or elements in nature
society. However, the behaviors of a set of random walk
are much less known, notwithstanding their interest@23–25#.
In a multiparticle system the random walkers present m
special phenomena because of the interactions betwee
walkers and environments as well as those between the w
ers. One of the most interesting characteristics is the col
tive motion of particles, which may be related to the mig
tion of locusts, flocks of flying birds, animal grouping hab
collective behavior of robots, and so on. Vicseket al. have
introduced a simple model of self-propelled particles in or
to investigate the emergence of self-ordered motion in s
tems of particles with biologically motivated interactio
@26#, in which particles are driven with a constant absolu
velocity and at each time step assume the average dire
of motion of the particles in their neighborhood with som
random perturbation added. The model exhibits a type
kinetic phase transition from no transport to finite net tra
port. Considering the physical properties of active eleme
with mutual interactions, Shimoyamaet al.proposed a math
ematical model of collective motion@27#. The model exhibits
several kinds of cluster motion seen in nature, including c
lective rotation, chaos, and wandering. Bussemakeret al.
also presented a cellular automation model for random w
ers with biologically motivated interactions favoring loc
alignment @28#. The model leads to collective motion o
swarming behavior, and a dynamical phase transition ex
iting spontaneous breaking of rotational symmetry occur
a critical parameter value. Considering a finite-size flo
Levine et al. presented a discrete model consisting of se
propelled interacting particles that obey simple rules@29#.
The self-organization in the model can lead to a localiz
flock of finite extent. These dynamical models can give p
tures of the cooperative motion for multiparticle systems,
the interactions between particles are somewhat unnatur

In the above multiparticle models, the collective moti
results from the direct interaction between particles@25–29#.
Very recently, the patterns of particle distribution were inve
tigated in multiparticle systems by the random walks w
memory enhancement and decay@30#. Although there exists
no direct interaction between particles, the model also ex
its a similar collective behavior. In this paper, we investig
the multiparticle random walks on a~211!-dimensional de-
formable medium. In the model, the nondirect interact
particles move in a true potential. Of interest is that t
present model exhibits a cluster state for the particle dis
bution. The time evolution of the particle distribution and
dependence on the average particle density, stiffness of
dium as well as the stability of systems are studied by ex
sively numerical simulations and also a simple theoret
analysis. The present work will be helpful to understand
motion behaviors of particles in complex multiparticle sy
tems with interactions between elements and their envir
ment. These behaviors appear to be the specific proper
the collective motion for multiparticle systems, which is d
tinct from the motion of a random walker interacting wi
the environment.
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II. MODEL AND METHOD

The model used here is the same as that in the prev
paper@18#. To characterize the interactions between the p
ticles and medium, the most important work is establish
the expressions of the deformation of the medium made
the walker in the medium. In the present work, the deform
tion of the medium is depicted by the Kelvin-Voigt mod
@31#. The model can describe the deformation modes
many materials in nature under a load, such as soil, rub
and so on. According to the Kelvin-Voigt model@31#, under
a constant stresss0 the variation of the deformation of me
dium « with time t can be expressed by an exponential fo

«~ t !5«`~12e2at!, ~1!

where«` is the maximum deformation at the timet→`, and
a is a parameter concerned with the properties of the m
dium compressed. The parametera is named as the stiffnes
parameter of the medium. The larger the parametera is, the
harder the further deformation of the medium is.

In the walk, the retention period of the walker per visit
expressed byt. The forces0 applied on the deformable
medium is the weightG of the walker. Without loss of gen
erality, we take«` , G, andt as the length, force, and tim
units, respectively. Thus, the deformation magnitude at
( i , j ) after n visits can be described as

«n~ i , j !512e2an( i , j ), ~2!

where«n( i , j ) can be regarded as the landscape or poten
of the deformable medium at site (i , j ). Therefore, the prob-
ability with which the walker moves from site (i , j ) to a
nearest neighbor (i 8, j 8) depends on the difference betwee
the deformation at site (i , j ) and that at site (i 8, j 8). It can be
expressed by

P$~ i , j !u~ i 8, j 8!%}exp$2b@«n~ i , j !2«n811~ i 8, j 8!#%,
~3!

whereb51/kBT, kB is the Boltzmann constant andT is the
‘‘temperature’’ of systems. Since the randomness of the w
reduces with the increase ofb, for convenience the param
eterb is called as the stability of the system.

The deformable medium is represented by using a tw
dimensional~2D! square lattice of sizeL3L with periodic
boundary conditions. Monte Carlo~MC! simulations have
been used to study the movement ofN random walkers on
the deformable medium. Initially the surface of the mediu
is flat with the deformation magnitude being zero at ea
site, and the particles are randomly distributed in the latt
with the average particle densityr05N/L2. At each MC
step, a particle is selected at random and makes an attem
move to a chosen nearest-neighbor site according to
probability of Eq.~3!. If the chosen site has been occupi
by the other particle, the movement is not accepted; oth
wise, the movement is performed. Then, the visiting timen
at the site occupied by the attempted particle is enhance
one and the walk comes into the next MC step. After ea
MC step the ‘‘time’’ is increased by 1/N, such that after 1
time step, on the average, all particles in the system h
2-2
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MULTIPARTICLE RANDOM WALKS ON A . . . PHYSICAL REVIEW E 66, 041112 ~2002!
attempted to jump. It should be noted that the present ‘‘tim
is not the true time, and we call it as the ‘‘quasitime.’’ Whe
the present model is applied to the biological systems,
present ‘‘time’’ may correspond to the true time. For the pu
physical systems, the present definition of time is not con
tent with that of the true time, because the jump probabi
of the walker is different at different time steps, which resu
in different jump time. In the pure physical systems, the d
nition of true time can be obtained by choosing one wal
and jump direction with a global normalized probabilit
However, the definition of time is not much relevant in t
present model because we focus on the pattern evolutio
the particle distribution. Therefore, for simplicity, we use t
above definition of quasitime to save the computation tim
It will be shown in the following section that there exis
only a slight difference between the results from these
types of definition of time.

We regard a group of particles as a cluster in which
particles adjoin one after another. The definition of a clus
is described as any two particles that are nearest neigh
and belong to the same cluster@32#. To characterize quanti
tatively the clustering phenomenon of the particle distrib
tion in the multiparticle systems, we introduce the avera
cluster sizeS(t) of the systems, which is the weight avera
of the number of particles per cluster and is expressed
@32,33#

S~ t !5

(
s

s2ns~ t !

(
s

sns~ t !

, ~4!

wherens(t) is the number of clusters withs particles at the
time t. Thus, the clustering degree of systems can be
scribed by the size-independent clustering coefficient

G~ t ![
S~ t !21

N21
, ~5!

whereN is the number of particles in the system. It can
seen that the value ofG changes from 0 to 1.0. The larger th
coefficientG is, the higher the clustering degree of the sy
tem is. WhenG50, the particles do not cluster and are sep
rated from each other; whenG51.0, the system has th
maximum clustering degree and all particles in the sys
are connected to one cluster.

III. RESULTS AND DISCUSSION

We have investigated the time evolution of the pattern
the particle distribution and its dependence on parametera,
b, andr0 in 2D multiparticle systems. For comparison, t
number of particles is chosen to be aboutN51000 for dif-
ferent systems. Namely, the lattice size is taken asL
5 int@(1000/r0)1/2#, where int@x# denotes the largest intege
X such thatX,x. The stiffness parametera takes value in
the interval@0.001,0.1#. To remove the fluctuation, all th
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results are taken from the averaging over at least ten in
pendent realizations.

Figure 1 shows the pattern evolution of the particle dis
bution for the multiparticle system with the stiffnessa
50.005, stabilityb55.62, and particle densityr050.05. It
can be seen from Fig. 1 that with the passage of time go
the pattern of the particle distribution varies. The distributi
exhibits a random dispersive pattern in the early stage, t
appear clusters which disperse in the whole lattice in
intermediate stage, and returns to the random dispersive
tern in the late stage. To quantify the distribution of particl
we calculate the clustering coefficientG(t) of the system.
Figure 2 shows the evolution of the clustering coefficie
G(t) with time t for several systems with the same para
etersa50.005 andr050.05 but differentb values. It can be
seen from Fig. 2 that there exists a maximum valueG* at an
intermediate timet* for eachb, andG* varies withb. For
comparison, Fig. 2 also shows some corresponding res
obtained from the definition of true time in which the pa
ticles jump with a global normalized probability. As we ca
see from Fig. 2, the difference between the results from
types of definitions of time is very small. This indicates th
the simulation results are reasonable by using the pre
definition of quasitime.

The behaviors in Figs. 1 and 2 can be explained as
lows. In the initial stage of the walk, the deformation
medium is very small and the surface of the medium is

FIG. 1. The evolution of the particle distribution pattern for th
multiparticle system with the parametersa50.005, b55.62, and
r050.05; timet520 ~a!, 1500~b!, and 100 000~c!.

FIG. 2. The evolution of the clustering coefficientG(t) with
time t at parametersa50.005 andr050.05 for the stabilityb
53.16 (3), 3.55 ~1!, 3.98 (n), 4.47 (,), 5.62 (L), 7.94 (s),
10.0 (h). For comparison, we also plot some corresponding res
from the definition of true time~solid symbols!, in which the par-
ticles jump with a global normalized probability.
2-3
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HUANG, ZOU, AND JIN PHYSICAL REVIEW E66, 041112 ~2002!
most flat, so the particles move randomly in the lattice
with initiation. Moreover, in this stage the drift distance of
particle does not attain the average distance between ne
boring particles, the particles have few chances to meet,
most of particles are separated from each other. Thus,
distribution of particles remains the random dispersive p
tern@see Fig. 1~a!# and the clustering coefficientG has a very
small value@see the short-time end of Fig. 2#. After a long
time, each site in the lattice has been visited many times
particles and the deformation at those sites has reach
large value close to the maximum deformation@18#. Namely,
the deformed medium can be considered as a smooth p
in this stage. In this case, the particles make purely rand
walks in the medium and the distribution of particles a
shows a random dispersive pattern with a small value oG
@see Fig. 1~c! and the long-time tails of Fig. 2#.

However, in the intermediate stage of the walk, the p
ticles have performed walks with a certain number of st
and the trajectories generated by neighboring particles o
lap partly. The walking of particles deforms the medium. T
deformed medium can be described by the complex la
scape with valleys and apexes@18#. In this situation, the par-
ticles will tend to gather in the valleys and form groups. T
motions of the particles in the same group are influenced
sharing the deformation region generated mainly by the p
ticles in this group. Because the particles prefer to walk
ward the sites with the larger deformation, the particles in
same group concentrate gradually and form a cluster a
certain time steps. Therefore, the distribution of particles
pears a clustering phenomenon@see Fig. 1~b!# and there ex-
ists a maximum valueG* of the clustering coefficient in eac
G-t curve of the system~see Fig. 2!. For convenience, we
call the maximum valueG* as the characteristic clusterin
coefficient, which characterizes the clustering degree of
ticles in a system.

Figure 2 also shows that increasing the stability param
b widens theG-t curves. This mainly results from the fac
that the largerb leads to a stronger localization of particle
and thereby the diffusion of particles is slower@18#.

From Fig. 2 we can also find that for a fixed stiffnessa
there exists an optimal clustering stabilitybp at which the
system has the strongest clustering ability. Asb is less or
larger thanbp , the characteristic clustering coefficientG*
reduces. At the optimal clustering stabilitybp'5.62, there
exists an optimal clustering coefficientGp* '0.0093~see the
curve symbolized by diamonds in Fig. 2!. In Fig. 3 we plot
the characteristic clustering coefficientG* as a function of
the stability b at the particle densityr050.05 for several
different a values. It can be seen from Fig. 3 that as t
stability b increases, the characteristic clustering coeffici
G* first increases to a maximum valueGp* , and then re-
duces. From Fig. 3 we can also see that the optimal clus
ing stability bp is almost independent of the stiffnessa, but
the optimal clustering coefficientGp* increases drastically
with the reduction ofa.

The dependence of the characteristic clustering coeffic
G* on the stabilityb in Fig. 3 can be explained as follows
When the stability parameterb is very small (!bp), the
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fluctuation of the system is very strong. The motions of p
ticles are governed by the randomness of the system, and
particles perform approximately purely random walks ir
spective of the deformation@18#. In this case, the particle
cannot join and are randomly distributed in the lattice. The
fore, the characteristic clustering coefficientG* takes a very
small value, which corresponds to that of randomly distr
uted particles~see Fig. 3!. When the stabilityb is very large
(@bp), the randomness of the system is very weak and
motions of particles are determined by the deformation of
medium@18#. In this situation the trajectories of the particle
are compact, surrounding their original sites. The partic
are localized in their compact trajectories and diffuse
them. In this case, the medium at visited sites has alm
reached the maximum deformation except the sites near
boundary of trajectories@18#. Thus, one can expect the pa
ticles to move independently before their meeting. After th
all the visited sites, which have almost reached the maxim
deformation, are connected together. The particles will m
purely random walks in the connected region with the ma
mum deformation and have a very small probability of jum
ing into the unvisited sites@18#. Therefore, in this situation
the clustering degree of particles is expected to be not h
and the system also has a small value ofG* ~see Fig. 3!.

In the intermediate range ofb, the effect of the deforma-
tion « is comparable to that of the thermal fluctuation 1/b on
the motions of particles@18#. On the one hand, because
the finite b value, the particles can easily move in the m
dium comparing with the case of largeb, and have many
chances to meet. On the other hand, the generated defo
tion may somewhat localize the motions of particles beca
the value ofb is not very small@18#. In this case, once two
particles meet they will share the deformation generated
each other and tend to group and form a cluster. The m
the number of particles in a cluster is, the more advantage
the share of deformation is, and the more stable this clu
is. Correspondingly, one can expect that there exists an
timal clustering stabilitybp at which the system is mos
favorable for the clustering of particles, and the characteri
clustering coefficientG* has a maximum valueGp* ~see Fig.
3!. In the following, we will discuss the dependence of t

FIG. 3. The characteristic clustering coefficientG* as a function
of the stability b at the particle densityr050.05. From top to
bottom, stiffnessa50.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1.
2-4
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MULTIPARTICLE RANDOM WALKS ON A . . . PHYSICAL REVIEW E 66, 041112 ~2002!
optimal clustering coefficientGp* on the stiffnessa.
First we investigate the clustering timet* of the system as

a function of the stiffnessa for fixed stabilityb and density
r0. According to Eq.~1!, the smaller the stiffnessa is, the
longer the needed time for the medium reaching the m
mum deformation is, and the longer the clustering time of
system is. From the discussion above, one can know tha
optimal clustering behavior of the system occurs in the c
where the thermal fluctuation approximately balances the
fect of the deformation on the motions of particles. The
fore, in the case of optimal clustering one can estimate
optimal clustering stabilitybp by the following expression
@18#:

bp«p* 'A, ~6a!

where«p* is the effective deformation shared by the cluste
particles andA is a constant of orderO(1). From Fig. 3 we
know that the optimal clustering stabilitybp is approxi-
mately independent of the stiffnessa. According to Eq.~6a!,
the effective deformation«p* is approximately a constan

Employing the relation«p* 512e2atp* , we can obtain that
atp* 5const. Thus, we have

tp* }a21. ~6b!

In Fig. 4~a! we plot the clustering coefficientG(t) as a func-
tion of time t for several differenta values at parameter
bp.5.62 andr050.05. It can be seen from Fig. 4~a! that the
smaller the stiffnessa is, the larger the clustering timetp* is,
and the higher the clustering degree of systems is. Th
behaviors are consistent with the discussions above. F
Fig. 4~a!, we can estimate the characteristic timetp* corre-
sponding to the characteristic clustering coefficientG* . Fig-
ure 4~b! shows the optimal clustering timetp* as a function of
the stiffnessa in log-log scale. It can be seen from Fig. 4~b!
that the simulation results are in good agreement with
~6b!.

Going a step further, we investigate the surface morph
ogy of the deformable medium generated by particles. In
walk, because the motions of particles deform the medi
the surface of the medium becomes rougher and roug
with the passage of time. In the simulations, the roughnes
the surface is characterized by the surface widthw(t), which
is defined by the rms fluctuation in the deformation,

w~L,t ![S 1

L2 (
i 51

L

(
j 51

L

@«~ i , j ,t !2 «̄~ t !#2D 1/2

, ~7!

where«̄(t) is the average deformation per site at the timet.
To monitor the roughening process quantitatively we m
sure the width of the surface as a function of time. Figu
5~a! shows the time evolution of the surface widthw(t) for
severalb values at the stiffnessa50.001 and densityr0
50.05. It can be seen from Fig. 5~a! that the surface width
w(t) first increases until a maximum, and then decrea
The behavior in Fig. 5~a! is easy to understand. Initially eac
site in the medium does not deform and the surface w
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w(t) is zero. After some time, the motions of particles w
deform the medium and the interface becomes rougher
rougher, which leads to an increase in the surface wi
w(t). When some sites in the lattice reach the maxim
deformation, these sites will no longer contribute to the
crease ofw(t) and the surface widthw(t) reaches a maxi-
mum. After that the number of sites with a maximum defo
mation becomes more and more, and the surface widthw(t)
gradually reduces until the limit value of 0.0 at which a
sites in the surface have reached the maximum deforma

To further understand the roughening process, in Fig. 5~b!
we also plot the surface widthw(t) as a function of timet in
log-log scale. As one can see, there exists a crossover timtx
during the time evolution of the surface width. Initially th
surface widthw(t) increases as a power of time,

w~ t !5w0td, t!tx , ~8!

wherew0 is the surface width of the medium at the initi
time. The exponentd, which is called as the growth expo
nent, characterizes the time-dependent dynamics of

FIG. 4. ~a! The evolution of the clustering coefficientG(t) with
time t at the parametersb55.62(.bp) andr050.05; from right to
left, stiffnessa50.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1.~b! The
optimal clustering timetp* as a function of the stiffnessa; the
symbols are the simulation results and the line is the fitting plo
Eq. ~6b!.
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HUANG, ZOU, AND JIN PHYSICAL REVIEW E66, 041112 ~2002!
roughening process. From Fig. 5~b!, we obtain the growth
exponentd.0.585. It can also be seen from Fig. 5~b! that
there exists a critical roughening stabilitybc'1.77 at which
the surface widthw(t) shows the best power-law relatio
and the crossover timetx has the maximum value. Asb
,bc , the curves of the surface widthw(t) bend downward,
and asb.bc the curves bend upward. The existence of
critical stabilitybc also results from the competition betwee
the effect of the thermal fluctuation and that of the rando
ness on the motions of particles@18#. The present critical
stability bc corresponds to the case where the particles be
to cluster, and the optimal stabilitybp corresponds the cas
where the system is the most favorable for the clustering
particles. Therefore, the value ofbc is less than that ofbp ,
as expected. In addition, we also investigate the cases fo
stiffnessa50.005, 0.01, and 0.1, respectively. The surfa
width w(t) shows the similar behavior except the differen
of w0, and the same growth exponentd.0.585 is obtained
as the case ofa50.001.

From the discussions above, we can know that accom
nying the clustering of particles, the surface of medium
comes rough and forms a complex landscape with vall

FIG. 5. ~a! The evolution of the surface widthw(t) of medium
with time t at the parametersa50.001 andr050.05; from bottom
to top, stabilityb51.12, 1.41, 1.77, 2.0, 2.24, 2.51, 2.82, 3.16.~b!
The log-log plot of the surface widthw(t) with the same conditions
as ~a!; from bottom to topb50.1, 1.41, 1.77, 2.51, 3.16; the lin
has a slope of 0.585.
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and apexes. The higher the clustering degree of particle
the rougher the surface of the medium is. Therefore, one
expect that there exists a certain relationship between
clustering degree and the roughness of the surface. To
this relation, for simplicity we assume that the optimal clu
tering coefficient is directly proportional to the reduced s
face width of the medium. Thus, we have

Gp* }w̃p* . ~9!

The reduced surface widthw̃(t)5w(t)/w0 is independent of
the stiffnessa for short times. Combining Eqs.~6b! and ~8!
we obtain

w̃p* }a2d. ~10!

Comparing Eq.~9! with Eq. ~10! and substituting the value
of d, we get

Gp* }a20.585. ~11!

Figure 6 plots the optimal clustering coefficientGp* as a
function of the stiffnessa in log-log scale. It can be see
from Fig. 6 that the simulation results are in good agreem
with Eq. ~11!. The excellent data consistence supports
proportional assumption in Eq.~9!.

We also investigate the dependence of the particle dis
bution on the average particle densityr0. In the investiga-
tions, the stiffness of medium is fixed ata50.01, and the
particle densityr0 takes value ranging from 0.001 to 0.1
The results have shown that the systems have the sim
clustering behaviors for different particle densities. Figure
plots the characteristic clustering coefficientG* as a function
of the stability b for severalr0 values at the stiffnessa
50.01. It can be seen from Fig. 7 that the optimal cluster
stability bp is independent of the particle densityr0. How-
ever, with the particle densityr0 rising, the clustering degree
of particles increases drastically.

FIG. 6. The optimal clustering coefficientGp* as a function of
the stiffnessa at densityr050.05. The symbols are the simulatio
results and the line is the fitting plot of Eq.~11!.
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MULTIPARTICLE RANDOM WALKS ON A . . . PHYSICAL REVIEW E 66, 041112 ~2002!
Figure 7 can be understood as follows. When the part
densityr0 of systems is larger, the average distance betw
particles is smaller and the particles have more chance
meet and cluster. Therefore, the clustering degree of part
increases distinctly with the particle densityr0 rise. How-
ever, the optimal clustering stabilitybp is determined by
striking a balance between the thermal fluctuation and de
mation of the medium, sobp is not related tor0. As men-
tioned above, the average particle distance of the systed̄
affects the clustering degree of particles. As the average
tanced̄ decreases, more particles share the same deform
region, and the clustering ability of the system enhanc
Since the optimal clustering coefficientGp* characterizes the
clustering degree and clustering ability for the system wit
certaina, one can expect thatGp* is inversely proportional to

the average distanced̄ between particles as

Gp* }1/d̄. ~12a!

Employing the relationd̄}(1/r0)1/2, we obtain

Gp* }r0
1/2. ~12b!

Figure 8 shows the optimal clustering coefficientGp* as a
function of the average particle densityr0 in log-log scale. It
can be seen from Fig. 8 that the simulation results are
agreement with Eq.~12b!. The slight difference between th
simulation results and Eq.~12b! may be because of the non
linear effects of systems.

FIG. 7. The characteristic clustering coefficientG* as a function
of the stabilityb at stiffnessa50.01; from bottom to top, density
r050.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1.
nts
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IV. CONCLUSIONS

We have investigated the multiparticle random walks o
~211!-dimensional deformable medium. The evolution
the particle distribution with time is studied. The resu
show that for the particle distribution there exists a cluster
phenomenon in the intermediate time of the evolution. T
dependence of the particle distribution on the stiffness
mediuma, stability of systemsb, and average particle den
sity r0 is also investigated. It shows that at an optimal clu
tering stabilitybp , the system has the highest clustering e
tent corresponding to a maximum clustering coefficientGp*
for the fixed stiffnessa and particle densityr0. The optimal
clustering stabilitybp is almost independent of the stiffnes
a and densityr0. With the increase of the stiffnessa, the
optimal clustering coefficientGp* decreases following the re
lation of Gp* }a20.585. The relationship betweenGp* and r0

can be expressed byGp* }r0
1/2. The surface morphology o

the medium is also investigated. It shows that initially t
surface widthw(t) increases as a power of time with th
growth exponent of about 0.585.
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FIG. 8. The optimal clustering coefficientGp* as a function of
the particle densityr0 at stiffnessa50.01. The symbols are the
simulation results and the line is the fitting plot of Eq.~12b!.
@1# E.W. Montroll and M.F. Shesinger, inNonequilibrium Phe-
nomena II: From Stochastics to Hydrodynamics, edited by
E.W. Montroll and J.L. Lebowitz~North-Holland, Amsterdam,
1984!.

@2# B.H. Hughes, Random Walks and Random Environme
~Clarendon, Oxford, 1995!, Vol. 1; G.H. Weiss,Aspects and
Applications of the Random Walk~North-Holland, Amsterdam,
1994!.

@3# F. Wang and D.P. Landau, Phys. Rev. Lett.86, 2050~2001!; M.
Plapp and A. Karma,ibid. 84, 1740~2000!.

@4# S.-Y. Huang, X.-W. Zou, and Z.-Z. Jin, Phys. Rev. E65,
052105~2002!.
2-7



ys
-

ys

ys

A

,

in,

s.

nd

H.

er,

nd

ett.

in,

cs

A

HUANG, ZOU, AND JIN PHYSICAL REVIEW E66, 041112 ~2002!
@5# J.J. Collins and C.J. De Luca, Phys. Rev. Lett.73, 764~1994!;
T. Ohira and R. Sawatari, Phys. Rev. E55, R2077~1997!.

@6# A. Berrones and H. Larralde, Phys. Rev. E63, 031109~2001!;
C. Moore and M.E.J. Newman,ibid. 61, 5678~2000!.

@7# A. Ordemann, G. Berkolaiko, S. Havlin, and A. Bunde, Ph
Rev. E61, R1005~2000!; A. Ordemann, M. Porto, H.E. Ro
man, and S. Havlin,ibid. 63, 020104~R! ~2001!.

@8# P.G. de Gennes,Scaling Concepts of Polymer Physics~Cornell
University, Ithaca, NY, 1979!, and references therein.

@9# D.J. Amit, G. Parisi, and L. Peliti, Phys. Rev. B27, 1635
~1983!.

@10# C. Domb and G.S. Joyce, J. Phys. C5, 956 ~1972!.
@11# H.E. Stanley, K. Kang, S. Redner, and R.L. Blumberg, Ph

Rev. Lett.51, 1223~1983!.
@12# V.B. Sapozhnikov, J. Phys. A27, L151 ~1994!; 31, 3935

~1998!.
@13# A. Ordemann, G. Berkolaiko, S. Havlin, and A. Bunde, Ph

Rev. E61, R1005~2000!.
@14# K. Barat and B.K. Chakrabarti, Phys. Rep.258, 377 ~1995!.
@15# Z.-J. Tan, X.-W. Zou, W. Zhang, and Z.-Z. Jin, Phys. Lett.

289, 251 ~2001!.
@16# R.D. Freimuth and L. Lam, inModeling Complex Phenomena

edited by L. Lam and V. Naroditsky~Springer, New York,
1992!.

@17# Z.-J. Tan, X.-W. Zou, S.-Y. Huang, W. Zhang, and Z.-Z. J
Phys. Rev. E65, 041101~2002!.

@18# S.-Y. Huang, X.-W. Zou, W.-B. Zhang, and Z.-Z. Jin, Phy
Rev. Lett.88, 056102~2002!.

@19# M.J.B. Krieger, J.-B. Billeter, and L. Keller, Nature~London!
406, 992 ~2000!.

@20# S. Hergarten and H.J. Neugebauer, Phys. Rev. Lett.86, 2689
~2001!.
04111
.

.

.

@21# B. Holldobler and E.O. Wilson,The Ants~Springer, Berlin,
1990!; E. Bonabeau and G. Theraulaz, Sci. Am.282~3!, 73
~2000!.

@22# J.K. Parrish and L. Edelstein-Keshet, Science284, 99 ~2000!;
R.K. Cowen, K.M.M. Lwiza, S. Sponaugle, C.B. Paris, a
D.B. Olson,ibid. 287, 857 ~2000!.

@23# M.F. Shlesinger, Nature~London! 355, 396 ~1992!; S.B. Yuste
and L. Acedo, Phys. Rev. E60, R3459~1999!.

@24# H. Larralde, P. Trunfio, S. Havlin, H.E. Stanley, and G.
Weiss, Nature~London! 355, 423 ~1992!; M. Boguñá, A.M.
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